50 Leveled Math Problems Book & CD-ROM - Level 3

Tap to Zoom Close
50 Leveled Math Problems Book & CD-ROM - Level 3
Next Prev

$19.95

Product Number: TB25610

Out of Stock (Estimated available to ship by 05/03/2018)


 Type

View All  Type
Add to list

For your Common Core curriculum.
Provides effective, research-based strategies to help teachers differentiate problem solving in the classroom. The book features 50 leveled math problems (150 problems total), an overview of the problem-solving process, ideas for formative assessment of students’ problem-solving abilities, 50 mini-lessons, student activity sheets with a problem tiered at 3 levels, and a teacher resource CD-ROM with electronic versions of activity sheets. 144 pages. CD-ROM is compatible with Windows® and Macintosh®.

Click here for PDF sample

CCSS Product Alignment
Math Grade 3
3.OA.1 Interpret products of whole numbers, e.g., interpret 5 x 7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5 x 7.
3.OA.2 Interpret whole-number quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 ÷ 8.
3.OA.3 Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.
3.OA.6 Understand division as an unknown-factor problem. For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8.
3.OA.7 Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that 8 x 5 = 40, one knows 40 ÷ 5 = 8) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.
3.OA.8 Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.
3.NBT.1 Use place value understanding to round whole numbers to the nearest 10 or 100.
3.NBT.2 Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.
3.NF.1 Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts, understand a fraction a/b as the quantity formed by a parts of size 1/b.
3.NF.2a Represent a fraction 1//b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into /b equal parts. Recognize that each part has size 1//b and that the endpoint of the part based at 0 locates the number 1//b on the number line.
3.NF.2b Represent a fraction a/b on a number line diagram by marking off a lengths 1/b from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line.
3.NF.3a Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.
3.NF.3b Recognize and generate simple equivalent fractions, e.g., 1/2 = 2/4, 4/6 = 2/3. Explain why the fractions are equivalent, e.g., by using a visual fraction model.
3.NF.3c Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form 3 = 3/1, recognize that 6/1 = 6, locate 4/4 and 1 at the same point of a number line diagram.
3.NF.3d Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.
3.MD.1 Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.
3.MD.2 Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.
3.MD.3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.
3.MD.4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units- whole numbers, halves, or quarters.
3.MD.5a A square with side length 1 unit, called “a unit square,” is said to have “one square unit” of area, and can be used to measure area.
3.MD.5b A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.
3.MD.6 Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).
3.MD.7a Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.
3.MD.7b Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.
3.MD.8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.
3.G.2 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape.

Brand  :       Shell Education
Item Weight  :       0.94
Manufacturer Part Number  :       50775
 
small-new-guide-overlay-promo-banner-2.png

QUICK-TIP GUIDE

Your guide to an exceptional shopping experience.

Learn More

Stay informed

Be the first to hear about our new products and exclusive offers