Nasco ARTWORKS

Camera Obscura/Foam Board Pinhole Camera

Time Required: 12-14 days
for High School Level

Objectives
Students will...
- Build a pinhole camera from scratch.
- Learn the history and uses of optic machines in art.
- Learn how light and optics work.
- Learn to see a composition.
- See how perspective works in nature and how to render it in art.

Knowledge and Skills
1. Perception. The student develops and organizes ideas from the environment.
 A. Illustrate ideas for artworks from direct observation.

2. Creative expression/performance. The student expresses ideas through original artworks, using a variety of media with appropriate skill.
 A. Create artworks based on direct observations, personal experience, and imagination.
 B. Demonstrate effective use of art media and tools in drawings and photography.

3. Historical/cultural heritage. The student demonstrates an understanding of art history and culture as records of human achievement.
 A. Analyze selected artworks to determine cultural contexts.

4. Response/evaluation. The student makes informed judgments about personal artworks and the artworks of others.
 A. Analyze original artworks.

Vocabulary
- Camera Obscura
- Composition
- Value
- Perspective
- Negative/Positive Proportion
- Rule of Thirds
Directions

1. If the room allows, build it into a camera obscura. If there is a window, block it in with cardboard, heavy black paper, or whatever you can find that will block out the light. In one area, cut out a hole so light can pass through. Then place a painted or black-taped CD over the hole, or whatever else you may want to use, as an aperture.

2. Use the room-sized camera obscura to demonstrate what happens in the camera body.

3. Discuss the history of optics in art from Renaissance to today's cameras and scanners as tools in art.

4. Demonstrate how to make the pinhole camera, and give different examples of how to make the body.

5. Distribute supplies to students.

6. Have students spend 1-2 days measuring and laying out the camera on the foam board. The illustration is for a rectangular box, but the camera can take on a variety of shapes and sizes.

Box

Focal Length

Paper Dimensions

Paper Dimensions

Plus thickness of foam board

Cut-out for aperture

Lid

7. Cut out and score the body as shown in the illustration. Fold on the scored lines.

8. Cut a hole in one side of the body for the aperture as shown in the illustration.

9. Have students tape joints with black duct tape or other black tape that blocks out light.

10. Make lid in the same fashion as body. Be sure to measure the body accurately for the lid's dimensions.

11. Cut a piece of aluminum into a square big enough to cover the hole cut out of one side of the camera body. Drill a small pinhole in the center of the aluminum. Sand hole smooth with fine-grit sandpaper. Make sure the hole is a pinhole. You can always make it larger if exposure is too long.

Directions continued next page
12. Tape the aluminum over the center of the cutout on the camera body.
13. Place a piece of duct tape over the pinhole as your shutter.
14. Have students spend 1-2 days decorating their cameras.
15. Place the cameras on a light table or window, and look into it to see if any light is coming through. Test to see if lid is tight on body.
16. Test the cameras for light leaks by taking them in a darkroom, placing a piece of photo paper in back of the camera, and taking them outside. DO NOT open or remove the tape.
17. Develop the paper. If it is white, the camera is good to go. If it is black, the camera is leaking too much light. Go back and make sure the lid fits and that there are no corners leaking.
18. When the camera is light tight, place another piece of photo paper in the back, close the lid, and take outside to get a picture. Open the shutter (tape) for 8 seconds or so, and place the tape back over the hole.
19. Develop the photo paper and see how the picture looks. If it is too light, add more time to exposure. If it is too dark, do a shorter exposure. Typical exposure in full sun is 8-15 seconds depending on focal length. Longer cameras require longer exposures.

Advanced, Adaptations, and Modifications

- Advanced: Students may try double exposures. Students may also experiment with different cameras, like oatmeal cans, etc.
- Adaptations: Material used to create cameras can be changed; however, the assessment criterion remains the same.
- Modifications: Material used to create the cameras can be changed to an alternate material that is easier to manipulate, such as an oatmeal can, coffee tin, or anything that can be made light tight. Assessment criteria are modified according to the ability of the student.

Assessment

- Daily grade – working on cameras
- Major grade – completed camera and successful photo
 1. Correctly measured lines to create camera.
 2. Light tight camera.
 3. Creative design on outside of camera body.
 4. Correct exposure.
 5. Interesting composition.

Resources

- Student photos
- Teacher examples
- Room-sized camera obscura
Lesson developed by Brian Magnuson, Texas

X-Acto®

Materials
- X-Acto® knives (Cat. No. 970147 - (1100589 blades))
- Pencils (Cat. No. 972700 and 972789)
- Foam board, black on black, 20” x 30” x 1/8” (Cat. No. 972781)
- Duct tape, black (Cat. No. 972781)
- Swishpaper, fine-grit (Cat. No. 9714789)
- Self-healing pad (Cat. No. 978320)
- Yardsticks, 36” (Cat. No. 970457)
- Developers (Cat. No. 970457)
- Developing supplies
- Photo paper
- CD (*)
- Aluminum can (*)

ArtWorks Lesson Plans are developed by teachers with no claim of original authorship.

View additional Nasco ArtWorks Lesson Plans on our website at www.enasco.com/artsandcrafts!

Nasco

Nasco – Fort Atkinson
901 Janesville Avenue
Fort Atkinson, WI 53538-0901
Email: info@enasco.com

1-800-558-9595

Nasco – Modesto
4825 Stoddard Road
Modesto, CA 95352-3837
Email: modesto@enasco.com

Flyer NP015.10 Printed U.S.A. March 2010